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NOTATION

wing span
quadrature coefficient
local chord

rate of change of hinge moment coefficient with flap deflection angle
measured at o = 0°

rate of change of rolling moment coefficient with flap deflection
angle measured at o = 0°

rate of change of 1lift coefficient with flap deflection angle mea-
sured at o = 0°

change in section 1lift coefficient due to flap deflection
change in overall 1ift coefficient due to flap deflection
differential pressure coefficient

complete elliptic integral of the second kind with parameter m

function that need not be precisely defined for the purpose of the
section in which it is used

chordwise pressure mode
number of stations used in performing a numerical integration
complete elliptic integral of the first kind with parameter m

Mach number; also an integer representing the number of integration
points used in some particular numerical quadrature

number of chordwise control points

position of the hinge line or its extension measured relative to the
50-percent chord line and made dimensionless by the local semi-
chord; -1 < x, < +1 :

streamwise slope of the wing mean camber surface

/1 - M2

difference or an error or a control surface deflection angle

constant used to control the overall accuracy of the chordwise
integrations

iii



Le

te

iv

quantity meant to be a constant or to shrink to zero in some process
spanwise positions of the flap side edges |n2| 2 |n1| and np; > 0
sweep angle of the control surface hinge line

coordinates made dimensionless by the semispan, see figure 1 (primes
are used when the coordinate is an integration variable)

symbol implying proportionality

Subscripts
control surface or flap
particular spanwise station
leading edge

trailing edge




STEADY, SUBSONIC, LIFTING SURFACE THEORY FOR WINGS WITH
SWEPT, PARTTAL SPAN, TRAILING EDGE CONTROL SURFACES
Richard T, Medan ’

Ames Research Center
SUMMARY

A method for computing the 1lifting pressure distribution on a wing with
partial span, swept control surfaces is presented. This method is valid within
the framework of linearized, steady, potential flow theory and consists of
using conventional lifting surface theory in conjunction with a flap pressure
mode. The cause of a numerical instability that can occur during the quadra-
ture of the flap pressure mode is discussed and an efficient technique to elim-
inate the instability is derived. This technique is valid for both the flap
pressure mode and regular pressure modes and could be used to improve existing
lifting surface methods. Examples of the use of the flap pressure mode and
comparisons among this method, other theoretical methods, and experiments are
given. Discrepancies with experiment are indicated and candidate causes are
presented. It is concluded that the method can lead to an efficient and accu-
rate solution of the mathematical problem when a partial span, trailing edge
flap is involved.

INTRODUCTION

Linearized, subsonic lifting surface theory for predicting lifting pres-
sure distributions and the associated loads and moments on wings having arbi-
trary planform and smooth surface slope distributions has been well developed.
This is not the case for wings having surface slope discontinuities, however.
Various methods for solving the control surface problem have been devised, but
all seem to possess inadequacies that result from not accurately portraying the
pressure distribution near the corner and at the side edges of the control sur-
face. Landahl (ref. 1) has determined the form and strength of the singular
parts of the pressure distribution., This report will show how his results,
suitably modified for a swept flap and specialized to the steady case, were
incorporated into an existing lifting surface theory. These results can also
be easily incorporated into lifting surface methods based on the theories of
Multhopp (ref. 2), Truckenbrodt (ref. 3), and Hsu and Weatherill (ref. L4).
Furthermore, the methods used herein indicate how the accuracy and efficiency
of existing, conventional lifting surface methods can be improved.



BASIC APPROACH

The fundamental equation of linearized, steady lifting surface theory is
. + gte(n')
[ zAC_(E',n')

G(E, ﬂ) = E—'llm —— ———IL—————-_K[g g, 3( ')]d&'dn' (1)

i 3z 2
Z+0 . (n=n')2+z2

- 1
£ o(n’)

where

Rle-£', B(n-n')] = 1 + = (2)
V(E-£')2 + B2(n-n')2 + R2z2

(see fig. 1). This equation is the
mathematical expression of the fact
that the wing is represented by a dis-
tribution of semiinfinite line doub-
lets with strengths proportional to
ACp and with their end points placed
on the wing and at downstream infinity
Hinge line extension ot (gee ref, 5 for a derivation). In the
constant % chord
analysis problem, a(£,n) is given and
Cnr(E',n') must be determined. The
limit and differentiation processes
can be interchanged with the integra-
tion 1f special procedures are
£ observed when the integrations are
Figure 1.- Definition of coordinate performed. Thus the integral equation
system. is usually written as

Eta(n')

1 A (e, ')
a(g, n) = Fom ——————)-Z—K[a-a',s(n-n')]da' an' (3)
_n'
(

(The cross on the integral sign symbolically designates these procedures. )

The method for solving this integral equation for a wing of arbitrary
planform is to first express the unknown ACP(E',n') in terms of known func-
tions with unknown coefficients. The functions generally used are obtained
from a consideration of two-dimensional airfoil and lifting line theories. A
convenient expansion, based on the theorles of Multhopp and Truckenbrodt, is
that used by Wagner (ref. 6):

] 1] - 2b 1 1
ACP(E » n') = ET;T':E: hn(E )fn(n ) (L)




The prescribed functions h, are taken from two-dimensional airfoil theory and
are comprised of the familiar cot ¢/2, sin ¢, sin 2¢, . . ., terms. The fp
terms are still unknown, but can be prescribed in terms of known functions
(which originated from lifting line theory) with unknown coefficients by the
use of Multhopp's interpolation formula:

M
1 —_
(') = 3£ s (60) (5)
m=1
where
fnm = fn(nm)
= cos 6 cos o
nm m M+1
8' = cos~In'
(-1 sin o sin[(M+1)e"]
S ') = 6
n("") T () (6)

Note that 8 (n') is not singular (fig. 2). Substituting equations (L} to (6)
into (3) leads to

N M
alg, n) =3, D a (£, n) (7)
where . n=1 m=l
te AC (', n') _
a (&, n) = %—i— an' > Klg-g',8(n-n')]ag’ an' (8)
-1 (n'-n)
E%e
LOF T and

] 1 -— 2b 1 |
Acpnm(a , n') = NED] hn(z )Sm(n )
(9)

The final step in the basic solution
is to determine the unknowns, f,p, by
o v/,—\\u | , enforcing equation (7) at a set of

‘ \\) selected control points on the wing

(collocation).

= L L . — The o,,'S are called downwash
nm
-LO ng M4 T , n, 10
a modes (or regular downwash modes ).
Because of the particular choices for
the pressure modes given in equation
(9), the resulting downwash modes are

Figure 2.- Multhopp interpolation
function of equation (6) for M =5
and m = 2,



smooth functions (except at spanwise stations where c(n') is not continuous or
differentiable). A moderate number of such downwash modes is inadequate to
represent the discontinuous a(&,n) which would occur for a wing having a
deflected control surface,

4. The most obvious method of hand-
ling a discontinuous a(£,n) is to use
the results of two-dimensional airfoil
theory for a section with a flap (ref.
7) and lifting line theory for a dis-
continuous downwash distribution (ref.
8) to obtain an additional (flap)
pressure mode in the form of equation
(4). It was concluded in reference 9,
however, that such a pressure mode
cannot be made to reliably represent
the partial span flap, and that pres-
sure modes developed from three-
dimensional theory are needed.
Landahl (ref, 1) developed such a
pressure mode (fig. 3) for an unswept

single flap; hinge line at flap. ge alsg showeddthat tﬁe pges-

£=0.65 and edges at n = 0 sure mode produces a downwash mode

and n = 0.5. Ylth exactly th? requlreq discontinu-

ity at the leading and side edges of

the flap, except possibly near the trailing edge. It has been determined that
the pressure mode will produce the correct discontinuity at the trailing edge
also. However, only the strength of the singular part of the pressure was
determined by Landahl and a residual part remains to be determined. It is
apparent then that the pressure mode need not contain any unknown elements nor
be involved in a collocation procedure. The proper manner in which to employ
Landahl's result is quite simple. Let the integral equation (eq. (3)) be
symbolically denoted by

Figure 3.- Distribution of the flap
mode of pressure on an aspect
ratio 2 rectangular wing with a

a=AC % K
p
Now 1let ACP = ACp + ACPf - ACpf, then
= - *
a ACpf ¥ K + (AC ACpf) K
= + -
o, (ACP AC f) % K
or
o= a, = (ACp - ACpf) % K
The term af can be calculated since AC is a known function and since a

pf
is given, o-ayp (which could be termed a residual downwash) is completely known.

The residual pressure distribution, ACp—ACpf, is unknown, but since a0l is

continuous (although it may not be differentiable at a flap edge), ACp—ACPf

L




should be sufficiently smooth that it may be expanded in the regular pressure
modes., Consequently, the residual pressure may be determined with .an existing
lifting surface program, and the final pressure distribution is given merely by
adding the flap pressure mode to the residual pressures., This is basically the
method followed here., The most difficult part was the numerical integration
procedure used to cglculate the flap downwash distribution efficiently and
accurately.

The procedures used are discussed in the next section in sufficient gen-
erality that they may be used to compute the downwash caused by any pressure
mode. The actual form of the flap pressure mode used is discussed in appendix
A,

BASIC INTEGRATION PROCEDURE

It was necessary to adopt an optimized quadrature procedure for the flap
pressure mode for the following reasons:

(1) Evaluating the flap pressure mode at a single, given point is more
difficult than for the regular pressure modes.

(2) The pressure is logarithmically singular at the hinge line. This
necessitates an increased number of chordwise quadrature points.

(3) More spanwise integration points are needed than for regular pressure
modes and, due to the second-order singularity in the spanwise integral, the
number of chordwise integration points must be increased simultaneously,
Therefore, if the number of spanwise integration points were doubled, the total
number of integration points should be more than doubled (approximately
tripled).

(4) The flap pressure is not in a separated form since it was derived from
a three-dimensional analysis. Therefore, the pressure at each point must be
calculated directly and cannot be represented as a simple product of previously
calculated and stored values, that is, the matrix of the flap pressure mode
values is not the outer product of two vectors as it is for the regular
pressure modes. Consequently, the time required to perform a calculation for
the flap pressure mode is much greater than for a regular pressure mode and
therefore more efficient quadrature procedures are desirable,

To best explain these procedures, consider first the spanwise Integration.
The flap downwash mode or any regular downwash mode can be manipulated into the
following form:

_1 Al Gf(i, n, n')

as(g, n) = 5;‘*_1' A dn' (10)

where Gp 1is the result of a chordwise numerical integration that has already
been performed and may contain some error. The integration indicated by equa-
tion (10) may be performed by various methods; the one used in this report is
from Multhopp (ref. 2; see appendix B also), but the general procedure for



obtaining an efficient method would be similar for other choices of the span-
wise integration technique, From reference 2, the following approximation is
obtained for equation (10):

-

af(gg ﬂ) =

I~

bj(n)Gf(é, N, N,) (11)

J

J=1

where

1
23
(@]
w
@

If n is restricted to

n = cos -l
J + 1

where v 1is some integer, then the expression for b (n) is

J

a J+1

Fsime, * V77
-sin ej
bj(n) = < =~ lv-3| odd (12)

(J+1)(n—nj)

o, otherwise

.

Nonzero values of b;(n) for various choices of J are given in figure L,
Note that the coefficients become very large for the integration stations
nearest n.

Consider the application of equations (11) and (12) for n = O:

_aa 1 sin 6
a.(£,0) =3 =G.(£,0,0) - =3 3=1§J,2 —?;gsg-ef(o,g,nj)

Recall that Gy is the result of a chordwise integration subject to some
error and assume, for illustration, that it is calculated exactly at all nj
except J = v-1, where the magnitude of the error is &Gr.

Then the magnitude of the error in computing Op is

Sa, = §G

RN N

-sin ev )

which, for moderate or large J, is approximately




-bj(n)

o}
[m]
<& is
A

-8 | 1 J
-10 -5 ] 5 1.5
7
Figure 4.- Quadrature coefficients for
the downwash integral n = 0.

e(g, 0,

3G, <

Sa, = - 80 (13)

Thus, by increasing J, the value
obtained for ap(£,0) does not con-
verge to the correct answer, but, on
the contrary, diverges from it.

A good example of this type of
instability is given by Rowe (ref.
10). He calculated the lift-curve
slope of a square wing using various
numbers of chordwise and spanwise
integration points. When he used L
chordwise points and increased the
number of spanwise points beyond 12,
his results diverged, whereas with 13
chordwise points the results were
stable when the number of spanwise
points was increased to 16. If Rowe
had continued increasing the number
of spanwise integration stations
without increasing the number of
chordwise points, however, his
results would have again become
unstable,

If follows from the discussion
relating to equation (13) that, to
guarantee convergence, the chordwise
integration that determined Gg
should use enough points so that

)
n\)—l (1)4)

f

(7 +1

)P

where P is a constant greater than 1 (a value of 2 is used here).

In effect, equation (14) is satisfied typically by selecting the largest
value of J 1likely to be used (or some equivalent to J if a quadrature rule
other than that given by egs. (11) to (12) is employed) and then using enough
chordwise quadrature points to ensure an acceptably accurate result. An
obvious drawback to this approach is that if a smaller value of J were used,
more chordwise points would be used than necessary. Another, and more impor-
tant, drawback is that actually determining the number of chordwise points to
use requires considerable experimentation even for the regular pressure modes.
(An example of this is provided in appendix B, figure 1 of ref, 11.) Since the
flap pressure mode contains additional parameters, such experimentation was not
considered practical. Another method for determining the number of chordwise

integration points was needed.



The method used is as follows: The chordwise integration is performed
repeatedly with an increasing number of points and the difference obtained with
each increase is compared until it is less than some prescribed value, §. The
difference is approximately proportional to the actual error (when In-n'| is
very small this is not always true and additional considerations are necessary).
Consequently, the actual error can be controlled by specifying 6. This proce-
dure would be inefficient except that it is possible to nest the quadrature
rules so that the number of arithmetic computations performed is only slightly
greater than the number that would have been performed if the computation had
been done only with the final number of integration points. Consider the
chordwise integrals, which can be put in the following form:

+1
G.(g, n, nj) = f_l V1-x'2 h(x', n, nj)dx' (15)

The above integral is evaluated by the Gaussian quadrature rule having

Y1-x'2 as its weight function on the interval (-1, +1):

_mm
Gf(E, n, n M+l :E: sin? ﬁ;i-h( i N nj) (16)

Equation (16) shows that if Gg ~results from using M, points, then

™ . 2 mm mm
T h{cos T N N (17)

Gr
+
n+l = m=1,M ,,,2 Mn+1 n+1 J

n+l =

if

Mn+1 = 2Mn + 1

Thus, for example, one can obtain the result of using 15 integration points by
computing function values at only 8 points and using also the result obtained
with T points. One would then have the results of using 15 and T points (and
hence information on the convergence) with only slightly more effort than would
be involved in obtaining the answer for 15 points only.

Now that the method whereby stability can be assured with respect to
increasing the number of spanwise integration points (as exemplified by eq.
(14)) and the method for controlling the accuracy of the chordwise integration
has been discussed, it is appropriate to consider how to minimize the total
error for a fixed number of spanwise integration points while holding the total
number of integration points constant. In doing this, some crude approxima-
tions must be introduced. However, the equations representing the approxima-
tions will be eliminated so that the results will be essentially independent of
them. The only effect of the approximations would be to control the total num-
ber of integration points used in obtaining the downwash values, that is, the
procedure may not actually be fully optimized, but the results will be
accurate,

8




The application of equation (11) gives

|8a,| < b, |6Ge (18)
f j:;,J S |

The right-hand side is to be minimized with respect to variations of the number
of chordwise points used at each station, Mj, subject to the constraint that

the total number of integration points used be constant, that is,

M = Z M, (19)
3=T,d 9

should be constant. Lagrange's multiplier method gives the following equations
for Mj:
BGGf

b, |
3,
’ h

+A=0 (20)

Here the approximation previously discussed is introduced, namely,

b, |¢
8G, ~ i (21)

f Mr

J
where q,r = constants > O. It is only reasonable that &Gy decrease as M;
increases. The effect of b: on the error occurs because the error obtaine
with a given number of chordwise integration points increases with decreasing
distance of the control point from the integration point due to the nature of
K in equation (2) and figure 5. The
quadrature weights b: also increase
B in magnitude as the integration point
‘ approaches the control point., Thus,
0 |bj| is a measure of this distance
. __ ——<~—__  effect (even though it may be impre-

cise) and this explains its appear-

1
n
&=
W
w
X

°r ] 10 ance in equation (21),
|

! n 24 i l

% ] o | 2 The use of equation (21) in (20)

&€ then gives

Figure 5.- Illustration of the discon- |b_|q+1

tinuity of the function X (eqs. (2) —l— . const

and (Alb)). M, [T

d
using equation (21) again gives r
(at1) =7 -a
aGfijl ~ const (22)



The values of q and r have not been separately studied, only their combina-
tion as given in equation (22). A value of 1/2 (values of 0, 1/2, and 1 were
used) gives the most accurate answers for a given total number of integration
points.

At this point it would be beneficial to summarize the concepts presented
thus far:

(1) The chordwise integral is done with an increasing number of chordwise
points using nested quadrature rules for efficiency until the resulting differ-
ences are less than a prescribed value, 6.

(2) To use the fewest total number of integration points for a given num-
ber spanwise, § is taken to be inversely proportional to the square root of
the absolute value of the associated quadrature weight.

(3) For convergence with respect to the number of spanwise integration
points, § 1is taken to be inversely proportional to (J+l)2, thus

60

= 23
ij|1/2(J+l)2 (23)

Note that the error involved in applying this procedure is highly indepen-
dent of any specific planform. The effect of planform changes is to change the
number of chordwise integration points needed to actually achieve the § given
by equation (23) and to change the number of spanwise integration points needed
to meke equation (11) an accurate approximation of equation (10). It is there-
fore possible to prescribe &gy for all planforms, leaving J as the only
parameter that must be varied to account for planform changes. Furthermore,
since it is possible to nest the spanwise quadrature rules in a manner similar
to that used in the chordwise integration, downwash modes computed with various
values of J can be determined simultaneously. This allows a rapid determina-
tion of whether the largest value of J used was sufficiently large. Thus,
multiple computer runs to assess the effect of J are usually unnecessary.

ILLUSTRATIVE COMPUTATIONS AND COMPARISONS

This method for treating partial span flaps has been used with an extended
version of Wagner's lifting surface computer program (ref. 6) to compute pres-
sures, span loading, and control surface derivatives on various configurations.
The primary extensions made to this program (hereafter referred to as WAGNG)
were: (1) to allow use of an erbitrary number of chordwise control points (Dr.
Wagner's extension) and (2) to allow use of an arbitrary downwash distribution.
In this program, a total of N lateral control lines are placed on the wing
leading and trailing edges and at the chordwise locations (given by eq. (A12))
and M streamwise control lines are distributed at the Multhopp locations
(given by nn of eq. (5)). The intersections of these lines are the control
points, where the boundary conditions are enforced. The number of control
points is N x M, but symmetry or antisymmetry is used to reduce the actual
number of unknowns to about half that value. Before discussing any final
results, however, the character of the residual downwash should be examined,

10




Aspect ratio=4,000
Taper ratio = .600

o

1

37.33°

Values used

625 by WAGNG
Spanwise location for N =

I/of pressure orifices e 5

6
7

Qoo

Region within which
a¢ can not be "—
Hinge line at calculated accurately

80% chord

¢—zso—ﬂ

.460

1.000 % ok

-4 ! 1 L L 1
0 .2 4 6 .8 1.0

x/c
. Figure 7.- Chordwise distribution of
Flgure.6.- Relative dimensions of the given and residual downwash at
wing tested in reference 12. n = 0.4457.

Figure 6 shows the planform of a wing (ref. 12) for which detailed compu-
tations of the residual downwash were performed., A chordwise distribution of
the given downwash, o, and the residual downwash, a-ap, are shown in figure T.
Note that 0=0p has a discontinuous derivative at the hinge line which could
probably be eliminated, but the distribution is felt to be smooth enough for
most purposes. Within l-percent c¢ of the hinge line, ay cannot be calculated
accurately with the present computer program because of a limitation on the
maximum number of spanwise integration points (543). The number of chordwise
control stations can be chosen to avoid the necessity of computing in this
region, however., As shown in reference 13, there are similar regions near, but
excluding, the wing edges. The latter regions are small enough that they have
caused no problem for N < 9 (the maximum number of chordwise control stations
allowed by WAGNG). Figure 7 also shows the chordwise control stations used for
several values of N and corresponding values of a-ap given to the lifting
surface program.

Spanwise distributions of o and a—-op are shown in figure 8. The discon-
1 o)

tinuities in the derivative of a-op at the side edges could

11



eliminated also but, again, it is felt
that this distribution is smooth enough
for practical purposes. This figure
also shows the singularity in downwash
which will generally occur at any sta-
tion for which the local sweep angle
changes abruptly (in this case, at

n = 0). This singularity occurs for
10 the regular pressure modes (eq. (L4))

. also and the only way it has been elim-
inated is by introducing artificial
rounding to the planform. However, if
control points are not placed at or
very near this point, no serious diffi-
culties seem to arise and, apparently,
the use of rounding is unnecessary.
This is the approach that has been used
here. Figure 8 also shows the values
of a-ap actually used in WAGNG for

. the fourth (N = 5) chordwise control
a-a¢ . station (x/c = 0.8536) at the 8 span-
Regions within which . .
sl afcannotbe  —si|le— wise control stations used for M = 16.
calculated accurately
o | Jo | Chordwise residual pressure distri-
1 1

butions calculated by WAGNG from a-ar
are shown in figure 9 for M = 16 and

e g N =5, 6, and T. The differences are
minor and support the previous state-
o ?“@ng’ ment that eliminating the discontinuous

M 16 derivative of o-op is not necessary

for practical purposes.

-5 i i | 1
0 25 50 75 1.0 .
K Calculated and experimental

results are compared in figure 10. The
constant pressure panel calculation was
Figure 8.- Spanwise distribution of performed by Ralph Carmichael of Ames
given and residual downwashes at Research Center using a version of the
the chordwise station x/c = 0.8536. Ames Wing-Body Computer Program (ref.
14). Two-hundred panels of unknown
strength wvere used on the semispan. WAGNG with N =T and M = 16 used 56
unknowns (although a comparable result was obtained with N = 5 and thus L0
unknowns ). The theoretical results agree reasonably well with experiment
except aft of the hinge line, where the influence of viscosity is strong.

Figure 11 shows a predicted section 1lift coefficient distribution for a
10° flap deflection on an AR = 8.56 swept wing. It is compared with experi-
mental values and values predicted by a vortex lattice method for a nearly
identical wing (ref, 15). The difference between the theoretical methods is
small, but both differ considerably from the experimental values. Reference 15
suggests that a possible reason for this may be separated flow since the data

were taken at a wing angle of attack of 10° and thus the flap was actually at
20° incidence,

12
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Figure 9.- Comparison of residual
chordwise pressure distributions
calculated by the Wagner computer
program from the residual downwash
o - af; n = 0.4457.
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Figure 10.- Comparison of experimental

and calculated lifting pressure
distributions on a swept wing with
partial span flap; M = 0.6, n = 0.46.

¥ 279°  R:8.56

O  Experiment (Ref 5} M=.2

Vortex lattice method (Ref. I5)

— — Present method {5X24 contro! points)
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I L 1 1
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Figure 11.- Comparison of calculated and experimental section lift coefficient
distributions for a wing with a partial span flap.
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Figure 12.- Comparison of predicted
and experimental ACL for a 60° ]
delta wing. Figure 13.- Wing tested in reference 17.

A third comparison is given in figure 12, where ACy, induced by flap
deflection on a 60° delta wing is shown as a function of angle of attack. A
sufficiently accurate answer was obtained with N = 7, with the predicted slope
only 3 percent above the experimental value (ref. 16). This close agreement,
however, may not be the result of a good theory, but more likely because the
theory ignores the presence of the fuselage’, which acts somewhat as a reflec-
tion plane and thus would tend to increase CLG' This phenomenon is also
apparent in the next comparison.

Figure 13 shows the planform of this next example (ref. 17). The Mach
number variations of the predicted and experimental control surface derivatives,

1k




Crgs CHg» and Cgg, are shown in figures 14 through 16, respectively (the theory

is invalid at M = 0.9, however, since this is above the critical Mach number).
The term CL6 is actually underpredicted by 5 percent (8 x 2L control points

at M = 0,6), which, as mentioned above, results from not accounting for the
interference of the fuselage. The term Cy, is overpredicted by 15 percent
(M = 0.6). Had the body interference been accounted for, the discrepancy might
have been greater; this discrepancy is large (and expected) since Ch depends
only on the lifting pressure in the region most adversely affected by viscosity.
The rolling moment derivative, Cy., is underpredicted by 6.5 percent (M = 0,6),

The comparisons presented here indicate that the present method can pre-
dict with reasonable accuracy features of the flow about wings with deflected
control surfaces. However, this linearized theory will fail when there is
separated flow, and this happens more readily when a control surface is
deflected., Consequently, the method should be used with discrimination. The
comparisons also indicate that finite element methods can predict flow features
for this type of configuration. However, a method of the present type (i.e.,
employing continuous loading functions) can be made more economical since far
fewer unknowns are needed.

.0tz
0i0 - (o]
&'—’/”/O 010 O Experiment (Ref.i7)
008 |- » a:3:0°
o O Experiment (Ref.17)
QL
13 a=5:0° oos (o ;relsén;: m:athlod t
© | x ontrol points
& 006 O Present method P
3 5x16 Control points o N Present method
© 3 .006 - 8x24 Control points
.004 b Present method N
8x24 Control points a
£ 004 F ©
.002 )
.002 -
0 ] ] L i J
5 .6 7 .8 .9 1.0
Mach number o | | | | |
5 .6 7 .8 .9 1.0
Moch number
Figure 14.- Variation of control
surface 1ift effectiveness with Figure 15.- Variation of the Cpg
Mach number (symmetric deflection hinge moment coefficient with
of two surfaces). Mach number (one surface only).
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0 1 1 1 l ]
.5 .6 7 .8 9 L.O

Mach number

Figure 16.- Variation of control surface rolling moment effectiveness with
Mach number (antisymmetric deflection of two surfaces).

CONCLUDING REMARKS

The governing integral equation of linearized, steady lifting surface
theory was examined and a standard method for solving it, based on infinite
aspect ratio theory, was briefly reviewed. It was pointed out that to treat
the partial span flap, one should not proceed similarly from the corresponding
infinite aspect ratio theory but rather use a three-dimensional local solution
(ref. 1) because only the latter can reliably represent the pressure distribu-
tion near the control surface corner. This local solution was incorporated
with an existing lifting surface program to cbtain a complete solution to the
problem.

Next a basic procedure for performing the numerical quadratures required
was derived. The results were in no way related to the fact that a control
surface pressure mode was being used, so they actually bear a direct signifi-
cance to lifting surface theory in general. It was determined how instabili-
ties in the spanwise integration occur if the chordwise and spanwise integra-
tion procedures are not coupled. The manner in which the integration procedure
should be related required the chordwise integration to be performed with a
specified accuracy, depending on the spanwise integration and control stationms.
It was indicated that the usual procedures are necessarily inefficient in
attaining the required accuracy. A new method was introduced which is more

16



efficient because it does not compute to a greater accuracy than needed and,
furthermore, because it uses the concept of "nested" quadrature rules.

Following the discussion of the quadrature procedures, illustrative compu-
tations and comparisons with experiments were discussed. The nature of the
control surface downwash mode was shown to be such that the discontinuity in
the given downwash could be properly eliminated, but discontinuous derivatives
remained, Calculated examples showed, however, that these irregularities are
sufficiently weak so as not to constitute a real problem. The method presented
was demonstrated to be an effective, accurate solution to the integral equation.
However, in some cases there were rather large discrepancies with experiments.
This was not unexpected. The principal causes were viscosity and the neglect
of body and thickness interference effects. Also, another possible source of
discrepancy is the gap between the control surface side edges and the wing due
to the control surface's deflection. This gap is not accounted for in the
theory.

[WN

A

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 9L035, July 26, 1972
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APPENDIX A
FORM OF THE FLAP PRESSURE MODE AND CHORDWISE INTEGRATION

The flap downwash mode is given by

1 *11 8, ACp
as(e, n) = 5= — Kle-¢',8(n-n")]ag’ an’ (Ala)
1 Je (n-n)?
Le
where

£-¢g!

RKlg-g', B(n-n")] =1 + (Alb)
V(g-£1)? + 82(n=n')?
This can be put in a more convenient form by the use of the following
transformations:
) Lx
g=1le, ) - ()] —5=+¢ (n') (A2a)
_ 1+x!
gt =g, n') -, (n)] Z—+¢g (n') (A2p)
then
+1 +1
- ' —
af(g, n) = g};f ——C—ED——)—[I AC_K(x-x', y)dx] dn' (A3)
1 (n'-n) -1 P
where

_ __bB '
vy = ET;ﬁj‘(n—n )

Expressions for AC, were given by Landahl and extended by Ashley (ref.
18) to the case of a swept flap. The expression given below (for unit flap
deflection) has been adapted from these references with a correction made to
properly account for the flap edges:

-2 cos A, YIx'-x )2 +y1 - vy
AC = F(x',n')2n (Aka)
P /IOE cosths TZITF TS - v,
where
b V1 - M2 cosz)\c
Y1 =Sy cos A (n'-ny) (AkD)
c
b vl - M2 cos2>\C
Y2 = ) (n'=nj) (Akc)

cos A
c
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The function F(x',n') must attain a value of 1.0 on the flap hinge line and
must introduce the correct edge behavior on the periphery of the planform (ref.
l), but is otherwise arbitrary. It has been chosen to be the following:

12
F(x',n') = Coln') /L= x'Z (ALQ)
1 - %2

v c
where r

1 In'| < n2

. 2 (Ahe)
In*]=|n, | L[ Int]=1n, |

1- (=] 1 +5{—— Int] > |ny|

Y 1-|n, | 1-|n; |

Combining equations (A3) and (Al) yields

cos Ac +1 Cz(n') C(S')
a(g,n) = >— H.(g, n, n')an’ (A5a)
hn2v/1-M2 cos?-Ac ) (n'~n)
where
+1
H.(g, n, ') = f_l VI-x"2 g(x')dx’ (A5D)
and
T 75T - y

g(x') = 1 = . K(x-x', y) (ASc)

Vl—Xc2 \/(X'_XC)Z + y% - y2

As indicated previously, the function Hy may have to be calculated very

accurately and it is to be calculated by the following Gaussian gquadrature
rule:

1
j*‘ Vi-x'2 g(x')ax' = ?%I :E: (1—x§)g(xj) (A6a)
where
- Jm
xj = cos =47 (A6b)

For equation (A6a) to be accurate, the function g{x') should be able to
be expressed accurately as a polynomial of degree less than 2J., Accordingly,
the logarithmic singularity of g(x') at x, when Y; and Y, are of opposite
sign or when Y; or Y, is zero must be eliminated or at least softened. Simi-
larly, the discontinuity that K has at x' = x when y = 0 must be softened.
The former has been accomplished with the following function:
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V1-x'2 2 X'—Xc)2 *yi -,
n

g(x') = g(x") - K(x—xc, v) (AT)
Y1-x3 V(x'—xch +y3 -y,
which is not singular anywhere, but has singular derivatives at x' = #1 and
x' = Xo, but these are much less serious. The influence function is then given

by

m

Ho(ganon') = 55 25 (1-xdE(x))

3=T,9
R(x-x_,y) [*! Vx'=x )2+y2 - y
1 1
4 —— (1-x'2)2n < .
- '_ 242 -
1 X, - x'-x +y y
il -
= (1-x2)g(x,)
T 4
R(x-x_,y) jx'-x =% )24y7 - v
+ > 3 (3—x§—x'xc-x'2)2n
- '— -
1 X, V{x xciz+yg ¥,
r 5x +x! y2 r
+ L 2 2 _ 2 v 4+ L 24
yle<x X ) Wi\ X<+ —g-ln x'-x V{x XCS y%
+1
r 5x +x! y% ~
.| /(x'=x ) - [1-x2+ — - V{x'—x )
yzL- x'=x_)2+y? —z 1-x2+ —zJin x'-x + V(x!' X, 2+y%
- -1
(a8)

When y = 0 and ]x| # 1, there is a discontinuity within the integration
interval (fig. 5). The previous procedure leads to the following expression

for Hf:
X _ K(x—xc,O) x
H, = V1-x'2 g(x')dx + — {same as in (A8) . . .} (A9)
-1 l—xc -1
The numerical integration is accomplished by substituting
= glx') - g(x) - (x'=x)g'(x) x' < x
glx') = (A10)

0 x' 2 x

This function is suitably smooth to be integrated by the Gaussian
guadrature method, resulting in:
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Ho(E,n,n') = 5o :E: (l—X§)§(xj) + (x) [x/I=%Z + sin”lx + 7]

- 2+x2
—g'(x)[' 3 Vix? + x(sin~1x + %% + last term in (A9)

(A11)

In the above formula, note that the summation need not be performed for x. > x
and that g(x) = g'(x) =0 if x < X,

A question deserving consideration is whether there is a best choice for
the number of quadrature points, J. Consider the function K(x-x',y) (see fig.
5). For small values of y, K(x-x',y) is nearly discontinuous at x-x' =0,
where it attains an average value. It seems cbvious that an integration point
at x' = x would be desirable since some of the errors could then be made to
cancel. The lifting surface program with which this method is used has (for
small Y) the control points at x = *1 and

m
chos—R—

T p=12,. .., N=2 (A12)

From equation (A6b), then, appropriate values for J would be

J = (N+1)k -1 (A13)

where Lk is any integer.

A final point to mention is that the procedures given for determining
Hf(g,n,n') may also be used to determine the flap pressure mode contribution to
the section coefficients of lift and pitching moment about the quarter-chord
merely by replacing K with 1 and with x'-0.5, respectively. For this compu-
tation, however, there is no optimum value for J.
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APPENDIX B

CORRECTIONS FOR THE LOGARITHMIC SINGULARITY AND OTHER SINGULARITIES
IN THE SPANWISE INTEGRAL

The spanwise integral for the flap downwash mode contains a factor of the
form

H(&,n,n') =j+1 h(x',n')[l + x-x! de' (B1)
-1 \/—(—}?—X')Z T y.2

where h(x',n') is a function that behaves as Y1-x'2 near the end points and
that may have a logarithmic singularity. Assume, however, that in the vicinity
of x' = x it is a regular function. By developing h(x',n') in a Taylor
series it can be shown that H(£,n,n') has a logarithmically singular second
derivative., Only the contribution in the vicinity of x' = x need be
considered:

xté
1) = ' ' X-x' '
H(g,n,n') = h(x',n') dx' + a regular part
i YTx-xT)Z + 52
x+8
9h —x!

= {%(X,n') + (x'-x) 5;7'(X,n') + ... X=X dx!
J V{x-x")2 + y2
X=-8
+ a regular part
+§ _ _}—( _

= ax‘ (x,n')x + . . .\ ——— dX + a regular part

VX2+4y2

8
-2 o= Bx' x,n' [ VX24y2 X— an(x+ Vx+y ﬂ ‘
0
+ a regular part + lower-order singularities

dh

- 3% (x,n")y2 an|Y| + a regular part

]

+ lower-order singularities

2
oh
= AT (x, )[ J (n-n")2 gn|n-n'| + a regular part

+ lower-order singularities (B2)

The factor (n-n')? is cancelled by its reciprocal in the spanwise inte-
gral, leaving a logarithmic singularity. This singularity also exists for the
regular downwash modes and was recognized by Multhopp (ref. 2), who devised a
method to correct for it. Subsequently, Mangler and Spencer (ref. 19) intro-
duced a better method and Garner (ref, 20) illustrated the importance of this
correction. This method of correcting for the logarithmic singularity has been
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used for the flap pressure mode and is reproduced here., Only the most impor-
tant terms are retained (i.e., (8h/3x')(x,n') and c(n') are replaced by
(3n/8x)(x,n) and c(n)). The proper edge behavior must be introduced into the
singular part; accordingly, it is multiplied by the factor v1-n'2//1-n2, The
singularity is then added and subtracted from the integrand, giving the follow-
ing expression for the flap downwash mode:

n c(n')
cos A, G(n') —
a (E,n) = Ho(g,n,n")
L 2y/12M2 cos?r, 4 (n'-n)?
2 _b_3h_ Yl-n'2

+Cy(n)B Y 3% (x,n) — gn|n-n'||an?

Cy(n)8%p Sh +1
- A% (x,n) [ V/1-n'2 gn|n=n'|an’ (B3)

Y1-n2 c(n) -1

The bracketed term will not contain a logarithmic singularity and is inte-

grated numerically by Multhopp's integration formula. The integral in the last
term has been done analytically in reference 20:

+1
i X Y1-n'2 gnin'-n|an = %{an -1~ 2n k] (BL4)

The expression for h{(x',n') is
2
1-x' ‘/(x'-xc)2 TY -
h(x',n') = > &n (B5)
l—X ] 2
c Ax'-x )2 +y5 - v,

which, when combined with equations (B3) and (B4), will yield the final form of
the equation for the flap mode of pressure for an interior control point, For
a control point on a wing leading edge (x' = -1) or trailing edge (x' = +1),
however, 3h/3x' becomes infinite, violating the assumption that h(x',n') can
be developed in a Taylor series.

The appropriate approach in either instance is to retain the square-root
behavior in the chordwise integral and to develop the remainder of the function
h(x',n') in a Taylor series about the leading- or trailing-edge point. This
approach was used by Jordan (ref. 21) for regular pressure modes. When applied
to the flap pressure modes, the following expression has been derived for the

lowest order irregular term in the flap influence function for the leading
edge:

V(4% _)2+y2 - y 3/2
16 c 1 1 b8
AL _(E,n,n') = en . Fi(m, )[nt-n|3/2
f 3/—"1_}((2: 1/("""7"""“}(0 252 - 3, 2c(n)cos IR e

(B6a)
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where Fi(m, ) = (2w, -1)E(m, ) + (1-m) JK(m ) (B6b)
m,_ = %-(1 +sin ¢, ) (B6c)
$p0 = tan'l[%- tan Agg (B64)

where Aﬁe is the leading-edge sweep angle at the control point defined so

that -m/2 < Xze < +1/2 and Ale > 0 on that side of the control point for which

the edge sweeps forward. The leading-edge sweep angle is of the opposite sign
on the other side (assuming no kink in the leading edge). The corresponding
formula for the trailing edge is ‘

16 m - Y 3/2 /
AHf(E,n,n') = - Ln . 2c( )cos 3 Fl(mte)lﬂ'-ﬂl3 2
WISE |07 - v, nJe0s by
(BTa)
where N

m = 5-(1 - sin ¢te) (BTo) |
\

Opo = tan'l[% tan Até} (B7e)

The term Ay, 1is defined as for the leading edge. Note that in either
case the parameter, m, of the elliptic integrals changes on passing from one
side of the control point to the other (more precisely, if mt is the value for
n' > n, then l-m* is the value for n' < n if there is no kink at n' = n).

As in the case of interior points, this irregularity is, after introducing the
factor v1-n'2/V/1-n2 to account for the edge behavior, simultaneously added
and subtracted from the integrand, leaving a part to integrate analytically and
a smoother part to integrate numerically. At the leading edge, equation (Béa)
is actually the leading term, so the spanwise integral does not have the
second-order pole, but rather one of order -1/2. After this is eliminated by
adding and subtracting the irregular part (eq. (B6a)), the leading term of the
integrand in the vicinity of n' = n would be a constant followed by terms of
order 1/2, 1, etc. Multhopp's integration formula may still be conveniently
used for this integration. The integral for the leading edge is thus

|
cos A +1 Cz(n') C(n )
an(E,m) = < 2 H_(£,n,n")
f sNJ/ = £ EsN,yNn
hn2/1M2 coszkc X (n'=n)?
- _}_n'Z Cz(n) c(n) 16 en l+xc +y1 -
/InZ Y oyvinz T - v,

(equation continued on the following page)
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+1
b8 3/2 -1/2 1-n'? c(n) 16
><<2c(n)cos %) Fl(mze)h'—nl e 1-n? (o) ® 3/Ax2(n)
C

-1

\ a/~ F‘(m ) ‘\

b 3/ £ Ly
2c(r81) 2 |qton|-1/2an"
(cos ¢le)3/2

The bracketed term is not singular and is computed using Multhopp's formula.
The last term, computed analytically, is also expressed in terms of elliptic
integrals:

| /T Y242 -
¥ \l+xc, +y1 Al

\/Zl-l-xc52+y2z -,

X fn

(B8)

+1
Fi(m, )
f Vi ke |g1_p|-1/2an
-1 (cos %e)s/z

= 2/2 ﬂﬁ‘l(m;e)[(l-n)K(m) +2nE(m)] + Fl(m’;e)[(lm)K(l-m) - 2nE(l—m)}
3(cos ¢2e)3/2\k (302)
BOa

where m = 1+ n (ng)

Therefore, for the leading edge,

+1 c(n")

cos xc /f Co(n') 5

Lr2/1-M2 cosZA ) 2
e \ %=

af(E,n) = Hf(E,n,n')

(n'-n)

V1-n'?2 ol n) e(n) 16 l+Xc RATRRS!
2

- fn
V1-n? b 3v1-x2 LX) 253 - v,
b 3/2 ‘]
8 L Y2
* \2c(ncos b0 Fl(mie) Int=n| V2| an
3/2
Lo oy a6 [ERIRE - o\
1-n2 ° 3'1-Xc(n5 /('IE(_CTZT{%__ v, 2c(n)cos %e

. _2_3@— {F1(m, ) [(1=n)K(m) + 2nE(m)] + Fl(m;e)[(1+n)K(l_m)_2nE(l_m)]}

(B10)
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For the trailing edge,

cos XC +110,(n")

H.(g,n,n")

a (g,n) = "
Lr2/1-M2 coszkc -1 (n'-n)?

,/(_ 52 2 .
vl-n'2 c(n) 16 1-x )°4y] - ¥y
+ === Cy(n) = n

V1-n2 3/1_xg /(1-xc)2+y§ -y,

3/2

bg ' -1/2
Fl(mte)|n -n| dn!

2c(n)cos o

Co(n) o(n) _16 MOx 7T -y 3/2

1 DB
- Zn
Y b 5
1-n2 3/1-xc /(1_X¢jz+y% -y, cln)cos beo

. g-gé-{Fl(m.;e)[(l-n)K(m) + 2nE (m) ]+F, (m,

m, ) (1+n)K(1-m)=-2nE(1-n) ]}
e

(B11)

It is important to note that values for =Xxo, ¥1, ¥2, ¢2e’ and ¢te appear-

ing in the above equations are to be evaluated at the control point, n. An
appropriate question might be: "How important are these corrections?" The
answer is supplied by figures 17(a) through (e), which show downwash values cal-
culated for various points on a sample wing for various numbers of spanwise
integration points, J. These graphs clearly show that it is important to use
these corrections, at least when Multhopp's integration formula is used. For
other integration procedures (i.e., the zonal scheme of Watkins et al. (ref.
22)), this method of correction could also be applied. Although it is not
known how important the corrections would be, it seems, in view of how well
they worked for Multhopp's method, that they could be significantly worthwhile.
Figure 17 also shows how close af(g,n) can be predicted. An appropriate num-
ber to compare these values with is 1, since the flap pressure mode produces a
discontinuity of magnitude 1. For J = 191, the error is less than 0.3 percent
for all points, except for the one which is only 1.4 percent ¢ behind the
hinge line. The error for this point is approximately 6 percent. When comput-
ing af(i,n) for the lifting surface program, however, N can be chosen so that
all or most of the collocation points are not so near the hinge line. The
spanwise control point positions are chosen so that they are not near the side
edges of the control surface.
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Figure 17.- Concluded.
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